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ABSTRACT

This paper deals with the diffraction of time-harmonic

electromagnetic radiation by perfectly conducting obstacles

immersed in an inhomogeneous, anisotropic, conducting

medium. A mathematical formulation of the problem is

presented which Is applicable to obstacles of arbitrary shape

and to a very general class of media, and the existence,

uniqueness and continuous dependence on the data of the

solution is demonstrated.



THE STEADY-STATE DIFFRACTION OF ELECTROMAGNETIC RADIATION BY AN

OBSTACLE IN AN INHOMOGENEOUS ANISOTROPIC CONDUCTING MEDIUM

Calvin H. Wilcox

51. Introduction. This paper deals with the diffraction of time-harmonic

electromagnetic radiation by perfectly conducting obstacles immersed in an

inhomogeneous, anisotropic, conducting medium. A mathematical formulation

of the poblem is presented which is applicable to obstacles of arbitrary shape

and to a very general class of media, and the existence, uniqueness and

continuous dependence on the data of the solution is demonstrated.

Electromagnetic fields are represented by pairs of vector fields, Bcx, t)

(the electric field) and H(x, t) (the magnetic field), which are described here

by their (real-valued) components EJ(x, tQ, H C(x, t) (J = 1, 2, 3) relative to

a fixed rectangular coordinate system. The symbol x = (x,, x., x 3 ) denotes a

point in Euclidean space R3 and t is a time coordinate. Time-harmonic

electromagnetic fields have the form

(1.1) E1(x, t) = Re {e- t Ej(x)), H (x, t) = Re {e"10t H (x))

where w is a real frequency and

E(x}) " E (x) + iE(x), H{(x) = H (x) + iH•(x)

Sponsored by the Mathematics Research Center, United States Army, Madison,
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are the complex-valued components of vector fields E(x), H(x) which are

independent of t . Maxwell's equations for time-harmonic fields in an

inhomogeneous, anisotropic, conducting medium filling a domain Q C R3 have

the form

(Vx H) - (iWk+a-jk) Ek j

(1.2) JOin
(V× E) i + iWR k H k = K i

Here the summation convention is used (repeated indices are summed from I to

3), (VXH)l = 8H3/8x2 - 8H 2/ax 3 , etc. The functions 'ik - Ejk(X) ,

1 = "jk(x) and a- a jk(x) are real-valued and represent the components of•jk j

the dielectric, magnetic permeability, and electric conductivity tensors,

respectively. j and K are complex-valued and represent the electric and

magnetic current densities.

The quadratic form

1 (Cjk(x) Ej(xt) Ek(x,t) + Ijk(x) Hj(x,t) Hk(x,t))

defines the energy density for (real-valued) solutions of Maxweil'. equations

in an inhomogeneous, anisotropic medium. Hence, the tensors i jk and &Jk

are assumed to be positive definite. The conductivity tensor • must also be

positive definite if the medium is to be dissipative (energy is absorbed, rather

than created, in it).
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A perfect conductor (of electricity) is characterized by the property that

the tangential component of the electric field vanishes on its surface. Thus,

if a perfectly conducting obstacle O C R3 Is immersed in a medium occupying

0 =R - 0 then

(1.3) NXE=O on W,

where N is a normal vector on all

The diffraction problem considered here (the steady-state diffraction problem)

asks for the time-harmonic fields (1.1) generated by prescribed time-harmonic

electric and magnetic current densities

J(xt) = Re {e J(x)), K(x,t) v Re {e K(x))

acting in the presence of a prescribed obstacle 0 . Maxwell's equations (1. 2)

and the boundary condition (1.3) are necessary conditions on the solution.

However, they do not, in general, determine the solution uniquely. Indeed, If

the medium is homogeneous and isotropic and 80 has sharp edges It is known

that (1.3) must be supplemented by an "edge condition" to obtain uniqueness

[1]. Moreover, If 0 is unbounded a "condition at infinity" is needed to obtain

uniqueness (5, 7]. A complete formulation of the steady-state diffraction

problem Is given below in J 2 . The discussion in the remainder of this section

is intended to motivate the final formulation.

The time-average of the energy density for a time-harmonic electromagnetic

field is
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R {aj E JH'
Rejk j Ek+&Ljk Hj~k V

where Ei~=E - I EiIs the complex conjugate of Ek, etc. Most edge conditions

have been based on the physical principle that the energy in bounded portion

of space should finite; I. e.,

(1.4) Re f (EjkEj Ek +jk Hj Hk) dx <oo (dx = dxidxz dx 3)

for each bounded set CC R3 [3, 4] . This condition eliminates the possibility

that point-or line-sources of energy might reside in a sharp edge. (These

would clearly lead to non-uniqueness unless their distribution and strengths

were specified.) For homogeneous, isotropic media, (1. 4) has been used to

derive restrictions on the singularities in E and H that can occur at an edge.

The latter were then used to prove the uniqueness of the solution [3]. In this

paper (1.4) is used directly in the formulation of the problem and in the existence

and uniqueness theorems.

The Silver-Muller radiation condition has been used to obtain uniqueness

in the steady-state diffraction problem for bounded obstacles in a homogeneous,

isotropic medium [5, 6, 81. It is a condition which guarantees that the solution

behaves like an "outgoing wave" at large distances from the obstacle. The form

of the condition depends strongly on the form of Maxwell's equations for

homogeneous, isotropic media and no such conditions are known for inhomogeneous

or anisotropic media. However, the author has shown that for homogeneous,
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isotropic dissipative media (i. e., media with a positive electrical conductivity)

the Silver-M5ller radiation condition implies that the field components tend to

zero exponentially at infinity [8, p. 120]. In particular, it follows that

(1.5) Re{ jk E j Ek + ¾LjkHJ Hk)dx < c

for R sufficiently large. This is meaningful for inhomogeneous, anisotropic

media. Moreover, it is plausible that in dissipative media there is an energy

balance between the energy introduced by the source fields J and K and the

energy dissipated in the medium, so that the time-average energy is finite.

Conditions (1. 4) and (1. 5) are used as "edge condition" and "condition

at infinity" below. They can be combined conveniently into the single condition

that the total (time-average) energy in the medium is finite:

(1.6) Re f(-jkj Ekf + ýLjk Hj Wk) dx <

Notice that

1E 2 2 1E Z~E~÷ZZ÷iE~~E12
(1.7) E E=(E.+ iE )E iE ( (

so that (1. 6) can also be written

( 11 1 2(1.8) f (.[k(El Elk+ EZ Ej2 + ILk(Hj Hk + Hj Hk, dx < w

÷kjk i i
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1 2. Formulation of the Diffraction Problem. The tensors E jk' ýjk and

SJk are assumed to have the following properties.

(2.1) E jk(X), I•jk(x) and (- jk(x) are bounded, Lebesgue-rfeasurable

functions of x e 12, and

(2.2) Ejk(x), P'jk(x) and a- jk(x) are uniformly positive definite in Q; i. e.,

there exist positive constants e ms lm and a- m such that

E jk(x)4j k2--m 111m •j2 jk(x)jk m 11 k(X)jk: k-m('jk(Xjk)

for all xE £2 and all real g (IgIZ = + g2 + g2)

Conditions (2.1) and (2. 2) imply that there exist finite constants E M'

M. andT M such

(2.3) cjk(X)gj 4k Se 'MW)•jk(x) g k S ik< _4 12, (r jk(x) tj 4k Sa-M(Ejk(x) •j 9k)

for all x E 12 and all real g . The parts of conditions (2.1) and (2.2) applying

to fjk and R .k imply that the conditions (2.2) and (2.3) on ,jk are

equivalent to the conditions

cr 1 1 <- 0_k(x) 4j 1 k S O o•

However, the first form proves to be more convenient.

The tensors fjk, •Jk and Tjk are not assumed to be symmetric. However,

(2.1), (2.2) and (2.3) imply that their antisymmetric parts are bounded relative
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to their symmetric parts; i. e., there exist finite constants a such that

(4 jk(x) - Ekj(X)) 4j 71k <_ P jk(x) (9j Ck + '1J 71k)

(2.4) i(•jk(x) - iJkj(x))4jnkI S a Iijk(x)(9J 1k + nj 11k)

l(rjk(x) - a1kj(x)) gj Nk s a a- jk(x) (9J k + 11 1 N)

for all x F D and all real gj and ?Ij . All the results given below require,

for their proofs, that (2. 4) should hold with sufficiently small values of a

namely

1m(2.5) a < -M 0/7~ j

The formulation of the diffraction problem given below makes use of several

classes of vector fields on 92 . To define them let

L2(2) = {A: A(x) is Lebesgue-measurable on t, f IA(x)r dx< <.)

denote the Lebesgue class of square-integrable, complex-valued vector fields on

0 . Here Alx) = Alx) + IA (x) has complex-valued components

A (x) = AI(x)+ iA2(x) and

IA(x)l2 = IAk(x)+iA"(x)1 2 =(Al(x)+iA 2(x))'.(A1(x)-iA2(x))= 1A 1x)12.+ 1A2(x)12
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Notice that, because of (2.1), (2. 2) and (2. 3), a (Lebesgue-measurable)

electromagnetic field has finite energy if and only if E a L,(Q) and H E L2 (0)

The class of vector fields A e L,(Q) for which V)X A i L2 (0) is needed in the

formulation of the diffraction problem given below. Its definition is motivated

by the identity

(2.6) fA.vx -dx-f. VXAdx=f NXA.. dS
O 0 80

which is valid if A and 0 are continuously differentiable and 80 is sufficiently

smooth.

Definiton. Let A e LZ(Q) . Then VX A exists and equals B E LZ(0}) 4=:

fA.*Vx dx f B • dx for all 0 e CO(U)
0 0

Here CO(0) denotes the class of vector fields on 9 which have continuous

derivatives of all orders and vanish outside a compact subset of Q . VX A is

unique, if it exists, because CO (02) is dense in L2 (0) . The notations

L,(Vx; 0) = (A: A and VX A are in L(fQ)}

and

L0(Vx;) =L 2 (Vx;Q)r-,.{A: f A. VXBdx= fB " VxAdx for all Be L2(Vx; 0)}
0l 0



#388 -9-

are used below. Notice that "A fL0 (Vx; 12)" generalizes the boundary condition

"N XA = 0 on KV" . Indeed, if A and V XA are continuous in the closure

of 12 and 8a2 is smooth then A e L0(7x; 2 ) implies

f NXA. dS - 0

for all 0 which are continuously differentiable in the closure of a , and It

follows that NXA = 0 on aQ .

A formulation of the diffraction problem which is applicable to arbitrary

domains n2, and media satisfying (2.1) and (2. 2), is contained in the

Definition. Fields E and H define a strict solution of the steady-state

diffraction problem for the domain Q and source fields J c L (0) and

KF.2 ) E cL0 (Vx; f2), H e L.7(Vx; Q) and Maxwell's equations (. 2) hold

almost everywhere in Q

Notice that the generalized boundary condition, together with the combined

"edge condition" and "condition at infinity" (1. 6), are contained in the definitions

of L0 (Vx; n) and L,( Vx; 0)2
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§ 3. The Engrgv Inequality. The fields defined by

jj M (V•x H)j (iwEk + ajk) Ek

(3.1)

K- (V XE) + i(ikHk

are in LY(1) for every Ee L0(Vx; 0) and Hc L.(Vx; Q), by(2.l). Thus every
02

pair E e L0(Vx; 1)1 H f L2 (Vx; S2) defines a strict solution of the diffraction

problem, and the correspondence E, H -J I, K defines a linear operator on

L2(9) X L2 (Sl), with domain L (Vx; n) X L,(Vx; 0) . The main theorem in this2

paper is an "a priori" estimate which implies that this operator is bounded. It

will be called

Theorem I (The Energy Ineguality}. Let w(O0) be a real number and let

CJkl "jk and a- jk satisfies (2.1), (2.2), (2.4) and (2. 5) . Then there

exists a constant C, depending on w and the bounds for 6 jk, 1jk and a-jk

only, such that

(3.2) Re f(jk E. E k + 3jk H iHd dx< 4C f(1 +J2 K[ ) dx

for all E i L( 0x; ), H c L2(Vx; Q), with j and K defined by (3.1) . Indeed,

(3.2) holds with

2 + 2
(3.3) C =4 Max(l/ c 1/ )m M 2 2 m 2 2

m 8(Aaa.M -4a2 M

It is shown below that this number is positive when (2. 5) holds. Theorem I

and (2.2) imply
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Corollary 1. Under the same hypotheses,

(3.4) f ( JEJ? + IHI?-) dx < Cl f ( lz+ IKI'-) dx

where C1 = C Max(l/cml, I/lm) and C is given by (3.3)

The proof of Theorem 1 is based on two lemmas concerning the bilinear form

(3.5) I(E,H) = f(EJ - H. K.) dx ,
S2 i J Ji

which may be stated as follows.

Lemma 1. Under the hypotheses of Theorem I, there exists a positive constant

m, depending on w and the bounds for ejk, Ljk and rjk only, such that

(3.6) m Re f(Ejk EJ Ek + jkHj Hdx< _I(EH)l

0for all E E L0 (Vx;Q), H e L2(7x;r2) . Indeed, (3.6) holds with
2 81 [a2

a' 2 m- 8 w a- 4 M2C

(3.7) M 2 2 M M
G*2 + 4w

o-+
m

Lemma 2. Under the same hypotheses

(3.8) JI(E,H)j < 2 Max(l/- f, /-VI"m )(Re f c .E Ek + Ijk H3 Hkdx)!(flJ[Z+ [KlYdx)a.
92
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Lemmas 1 and 2 imply Theorem 1 with C = 4Max(11/ ms 11IL•)/m2 which.

with (3.7), gives (3.3) .

Proof of Lemma 1. Substituting (3. 1) in (3. 5J gives

I(,E, H) = f{fE i(VXHbj -H j(Vx E)j + ia) rJk E E k - Mjk E i E k -iW ýLA1j HJ Hk )dx
0

The sum of the first two integrals vanishes because E E Lz(Vx; 0), H . L2(Vx; 0)

Thus

I(EH) = f{(-o-jk + ie jk) Ej Ek- iW1k Hqj Hk}dX x

Q

If

+ 1 1 22 - 1 12
Ejk= Ej EkEj V Ejk EJ Ek-EjEk

+ = H 1 Hý+H 2 H 2  - 2 1 1H2

Hik j H Nk HjkjH "k j' N

then (see (1. 7))

(3.9) Ej Ek E k+ik +~ j+ i Hjk

and therefore

IIEH) E+ jk H d-if E - e E+ H} dx
I -f(jk jk JkEjk + Oljk di 'jkEjkw jk jk 1 ijkk
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Thus

IIE )1 f0 d)2+2 i xf JE- +IhRkH-dx) +W2(o (f.i ~+j~k

+( fri Ek dx)2 - ý2wfo-k Ek dx( fE kjkIkH - )+ 2 + + 2
jk jk jk ijk Jk~jkýj k+W(- kEjk-ýLk~kd

Dropping the underlined terms gives the inequality

II(E, H)12> fo. E + dx)2 + 2wf . Edk fE+ dx +1 2w f R ;+d

(3.10) -w E x E x w E +d 2 x
fcarjkE~df jk Jjk~ +k cfOjk jkdxfIljkHjkdx+c~ f'E JOk-jk -Jkjkdx

Now, by (2.4)

Itjk( Ej 1 -Ej Ej) 1(EkEf k) EZ4Ij a cE(E14Ei+ Ej Ej

i.e. ,

ljk E~Ik Ejk "k, o ajk Ejk4k Ej kE EE+

When multiplied by co and integrated over 11 this gives

+++W f dx<w E 1d1fxjawfkE E..wE xdxwj Jk jk -jk jk
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Moreover, (2.4) implies exactly similar results for jk and .jk Combining

these with (3.10) gives

II(E, H)I"->(f•r, Ej• dx)2 -41wlafa, E+ dx(f, ÷+ H +.x + W2 ÷f I + dx
-- t kk 9 - j jk a• jkEjk I jk jk'x 4 E JkEjk - •jkHjkdX).

Eliminating rjk by means of (2. 2) and (2. 3) then gives

(3.11.) I(E,H)!2 >•2_(fE,Ejx) -4Ico-ao.,fE E dx(e +-- Ej jk • , jkd (jk jk+ jk jkdX

2 4f jk Ej)C JkHjkkdx.

Notice that, by (3.9),

Re f(aE kHk) dx f (a kEk+I= + R dx

Hence (3.6) is equivalent to

II(E)H)1 2 > M2 (fj~ + ~H +dx 2114•, •i_ (f (I jk Ejk÷ •jk Hj k d

Thus if

0 . EjkE kx, P~iH+dx,

then (3.6) follows from (3.11) and the inequality

22 2 2 2 2 2
(3.12) T-ma -4jciar a(a+P)+W (a- >M (e+
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The proof of Lemma 1 will be completed by showing that (3.12) holds for all

real a and P when m is given by (3.7) . Indeed, (3.12) is equivalent to

2 2 22 2 2 2 22
(a- m _ZIWI6+c -m )a -2(1[6+w +m )+ 3+(w m )P : _0, 6 = 2aa M

This is true for all a and P if and only if

(3.13) r 2 -2 14 6+co 2 -m 2 >0m

and the discriminant

(- - 2 IWI 6 + - " m -' ) m -' 2 ) -(I6 2 + m 2 _>0

The last inequality is equivalent to

(3.14) (•m-2 4wio 6 - 62)oW2 - (O'2m+ 4oA) 22 _2>0
(31)m ir+)m >

2
This has oositive solutions m pFovided

f~s -- 2 , 411i 6 - 6 2 -- .2 + 4k 2 (6+ ,+21) 2 >0
r m m

i.e., provided 6 lies between 0 and the larger root of f(6) = 0
2

o< 6=2ao- <-2iI•+ r+4c2

m

This inequality is equivalent to (2. 5) . Assuming it holds, (3.14) has solutions

.n I 4 1w, 6 - 6 1-
0 < m 2 <_ -2' °m 2 26=2

m
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Conversely, (3.14) implies (3.12) provided (3.13) holds. Now, if m2 has

its largest allowable value (3. 7)

2 2 ( 2W2 - lul 6)2
2 -2 [c6+al -m - 2 >0

0- + 4(0
m

because
2 2 2

6 < _ _ _< 
a- +m

V/r2 ++42- + 211m

This completes the proof of Lemma 1

Proof of Lemma 2. Notice that, by (2. 2) ,

[El IE12 [+ IE212< E EE 1 + 2 +

= - k E i k + Ek = 'lk Ej k

Thus

1I(EH)I = If(E i'T - H i'K J) dxI -j f IEj 7Ij 1dx + f IHJ K ldx

J, £2 d L+ 1

fEllil dx + f IH UKI dx < (f EI2 dx) (f!JI2 dx)+ (fHn2 dx)'(f[KI dx)'

£2 £2 2 +2£2£

<(l fe E+dx)k(fIjf2 dx)* + (_L f. Hk dx) (fIK1Zdx)L

m2 k m S2 j

+ + ! 2 +

< -(fe JkEk +lJkHk dx)!(fIJI2 + IKI dx)z + 1_ '(fe.E+.k+, H•.Hdx) (fiJlZ+ Ixi2dxY

114)(f E ++ dx, (flJ12 + IKI dx)"

_ 2 M2 " k jk +Ljk jk I + d

This is equivalent to (3.8), and proves Lemma 2.
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§4. The Fundamental Theorems. Let E, H and E', H' be strict solutions

of the diffraction problcm corresponding to source fields J, K and J', K',

respectively. Then the differences E - E', H - H' define a strict solution with

source fields J - J', K - K', because Maxwell's equations (1. 2) are linear.

Hence, Corollary I implies

Corollary 2. Under the hypotheses of Theorem I,

(4.1) liE - E' [l'+ IIH - 14'11i< CI( ll - J'l12 + f1K - K' 2) ,

where II ... If denotes the L2(92) norm.

Corollary 2 asserts the continuous dependence of strict solutions on their

"data", the source fields J, K in L2(Q) . An immediate consequence is

Corollary 3 (The Uniqueness Theorem). The diffraction problem has at most

one strict solution corresponding to data J and K in L2(n) .

Indeed, if E, H and E', H' are strict solutions with the same data J, K

then (4. 1) with J' = J, K' = K implies E' = E, H' = H . Corollary 2 also plays

a key role in the proof of

Theorem 2 (The Existence Theorem). Let Q be an arbitrary domain in R3

let w (# 0) be a real number, and let eik, M jk and rjk satisfy (2.1), (2.2),

(2. 4) and (2. 5). Then the corresponding steady-state diffraction problem has a

(unique) strict solution for every pair of source fields I and K in Lw)

The proof makes use of the following (apparently) weaker notion of solution.

I
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Definition. Fields E, H define a solution with finite rciv of the

steady-state diffraction problem with source fields J and K in L2(92) *= E and

H are in L 2 (Q) (i. e. , the electromagnetic field has finite energy) and

f{H.(Vx -Z) -iCk. E 0 k- E 4' - J j o}dx 0
£2 j jj 'k j

(4.2)

f {E.(VX •')- ilk Hj 'k - K. P}dx = 0
0 i+'wýkj *k

for every 0 e L 0(Vx; 0) and T' L2 (Vx; L.

The usefulness of this notion stems from

Lemma 3. Fields E, H define a solution with finite energy Ii E, H define

a strict solution.

Proof. (The implication "= ") Note that CO (Q2)C L2 (Vx; £2) C LZ(Vx; 02)

Hence, identities (4. 2) imply

f H'VX4 0 dx f(iwc jk Ek + a-jk Ek + Jj}0j dx

and

f E # VX *dx = f(-iujk Hk + K )4,i dx

for all 4 and %k in C0(£), where the fields iwcjk Ek + Jk Ek + J. and

-iWIjk Hk + Kj are in L2 (Q2) . This implies (i) VX H and Vx E. exist in L2(n2)

and (ii) Maxwell's equations (1. 2) hold almost everywhere in £2 . In particular

t
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E and H are in L2(V7x; 0) . Finally, the second of the identities (4. 2),

with K. = (1XE)j + i• H, gives

f{Ej('7V Xk) -(VXE). Tjdx=0 for all %P e L2(Vx; 0)

i.e., E e L0(Vx; 0) . Thus E, H defines a strict solution.

(The implication " ") Multiply the first of Maxwell's equations (1. 2) by

Sf L0(Vx; f2) and integrate over £ . Then the term

JkVXH). )dx = fHj(VX 0).dx
02

because 4 e L,(Vx; o) and H e L2(Vx; 0) . This gives the first of identities

(4. 2) and the second follows by a similar argument.

Maxwell's equations (1. 2) determine a linear operator A on the Hilbert

space L2(Q) X L2(92), with domain

D(A) = L 0(Vx; £2) X Lz(Vx; £2)

defined by A(A, B) J(, K) where

r j (V XB) i - (iwE ik + crjk) Ak]

(4.3) (A, B) E D(A)

Kj (VXA)j + iw•LkBk



-20- #388

Corollary I implies that A is one-to-one on D(A), and that A-1 is

bounded: IA) BII <C1 IIA(A, B)II, where IIA, BL1 2 = 1AI]12+ I]BI1z is the norm in

Ln2(Q/) X L2(Q) .

Theorem 2 is equivalent to the assertion that R(A), the range of A, is

equal to L2 (0) X L2 (2/) . This will be established by showing that (L) R(A) is

dense in L2 (Q) X L2(0) and (ii) R(A) is closed in L2 (E2) X L2 (.2) . The first

assertion is called

Theorem 3. Under the hypotheses of Theorem 2,

R(A) = L2 (f2) X L2 (0)

where the bar denotes closure in L2 (S) X L2 (12)

Proof. R(A) is a closed linear subspace and

L2 (r2) X L2 (f2) = R(A) a) N

by a standard theorem on Hilbert space [2, p. 25J . Hence, it is sufficient to

show that if E, H c R(A) is orthogonal to R(A) in L2 (2) X L2 (R2) then

E= H= 0 . Now E, H LR(A) means

f(E + Hj )dx = o forall A, L0(Vx;2), B E L2(Vx; Q)

Combine this identity with Maxwell's equations (4. 3), and take first

A = o with 0c L0(Vx; 0), B = 0
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and second

A=O, B= ' with Ii, L(Vx;'2)

This gives the pair of identities

f{EJ(i Ejk- TJk) Dk + Hi(VX D)} 1 dx=O

f{E(V7X k) j- iI jkHj ik}dX = 0

for all 4DE L? (Vx; 92), '& c L2(Vx; 12) . These identities state that E, H is a

solution with finite energy of a modified diffraction problem (the adjoint problem),

with -w for w, Ckj) kj•j•'kj for EJk, Ijky cjk' and source fields J = K = 0

But, the conditions for the validity of Theorem 1 clearly imply the same conditions

for the modified problem. Thus, E, H is a strict solution of the modified problem

(by Lemma 3) with source fields J = K = 0 and therefore E = H = 0 by Theorem 1.

This proves Theorem 3.

Proof of Theorem 2. Let j e L(Q), K e L2(f) . Then, by Theorem 3, there

exist sequences of fields e EL(Vx; 0)) H e Ln(Vx; 0) whose source fields

?n Kn converge to J, K in L2(fQ) X L2(a2) . Applying Corollary 2 with E = En

H= Hn, E In) H' = HmIn gives

en. - EmUz+ RHn - Hmiz < ( _ m2 + IKn - KmUz)

It follows that {En) and {Hn} define Cauchy sequences in L,(12) . Hence,

limit fields
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E=limEn, H=limHn (in L2(n))
n- n - n c

exist because LY(O) is complete. Now, E and Hn define strict solutions

with source fields Jn Kn . Hence, by Lemma 3, En and Hn define solutions

with finite energy; i. e., identities (4. 2) hold with E for E, Hn for H
n Kn

J for J and K for K . Making n-* o in these identities gives the same

identities for the limit fields, since all the fields converge in L2 (Q) . Thus

E, H is a solution with finite energy, and therefore a strict solution (by Lemma 3)

having the prescribed source fields J, K which proves Theorem Z.
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